l.r. C	ode	e: 19EC0408	KI9	Q.P. Cod
Reg.	No	D:		
	SI	DDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: (AUTONOMOUS) B.Tech II Year II Semester Regular Examinations July-202	PUTTUR	
		ANALOG COMMUNICATIONS	the mich	
		(Electronics and Communication Engineering)	Caloulate	1 8 N
me: 3	3 hc	ours so Max.	Marks: 6	0
		(Answer all Five Units $5 \times 12 = 60$ Marks)		. 8
		UNIT-I UNIT-I		
1 :	a I	Explain Amplitude modulation for single tone information.	L2	6M
- 1	b I	Define Modulation index and percentage of modulation index. Obtain the	ne L2	6M
	e	expression for total transmitted power of AM wave. OR	State fro State fro	
2 :	a V V	With a neat diagram and relevant equations explain the generation of AN wave using Switching modulator.	M L2	6M
M	b A c C	A given AM broadcast station transmits a total power of 5kW when the carrier is modulated by sinusoidal signal with a modulation index of 0.7071. Determine Carrier power and Transmission Efficiency.	e L2 of	6M
2	0			
3 8	ı S	Show that the output of coherent detector of SSB modulated wave is give by VO(t)=1/4 AC m(t)cos ϕ +1/4 AC m(t)sin ϕ .	n L2	6 M
i.) C C aj E	Consider a resultant wave obtained by adding a non-coherent wave A($\cos(2\pi fct+\phi)$) to a DSB-SC wave $\cos(2\pi fct)$ m(t). This composite wave is pplied to an ideal envelope detector. Find the resulting detector output $\phi=0$.	CL4 s t.	6M
		OR		
4 a	1 E (I	Explain single tone modulation for transmitting only lower side band LSB) frequency of SSB modulation.	1 L2	6M
b	ex	Vhat is DSB-SC Modulation? Explain the time and frequency domain xpressions of DSB-SC wave.	n L2	6 M
5 a	D	Derive the expression for single - tone frequency modulation with ecessary waveforms.	h L5	6M
b	A T ca ar	107.76MHz carrier signal is frequency modulated by a 7kHz sine wave he resultant FM signal has a frequency deviation of 50kHz. Determine arrier swing, highest & lowest frequencies of frequency modulated signal and modulation index of FM wave.	e. L1 e ,	6M
(13	OR		
D a	E	xplain the functionality of each block of phase shift discriminator.	L2	6M
b	A (6 M w	single-tone FM is represented by the voltage equation as: $v(t) = 12cos$ $5 \times 106t + 5sin 1250t$) Determine the following: (i) Carrier frequency (ii) lodulating frequency (iii) Modulation index (iv) What power will this FM ave dissipate in 10 Ω resistors	s L4) 1	6M

	UNIT-IV			
7 a	For a broadcast Super-heterodyne AM receiver having no RF amplifier, the loaded Quality factor of the antenna coupling circuit is 100. Now, if the intermediate frequency is 455kHz, determine the image frequency and its rejection ratio at an incoming frequency of 1000kHz	L4	6M	
b	Calculate the noise figure for an SSB-SC system	L3	6M	
	00.eshiaM.xsM OR	SIDOU	6.90	
8 a	Write short notes on receiver parameters.		6M	
D	A radio receiver with 10KHz bandwidth has a noise figure of 30dB.	L4	6M	
	input SNR at 30dB			
	Modulation index and perce V_TIMIT rodulation index. Obtain the			
9 a	State the definitions of different types of analog pulse modulation	T.1	6M	
	schemes.	LI	UIVI	
b	Write a short note on channel capacity theorem.	L2	6M	
0	OR potstuborn gridotivez gniz			
lu a	Explain how PPM can be generated from PWM signals.	L2	6M	
0	Explain Shannon's encoding algorithm.	LI	6M	
	*** END ***			
	()=1/4 x/C millicos (+ k/4 A/C millisin ().			
			*	
	requency of SSB modulation.			
	TH-TMU			
	Inlation undex of FM waye.			